Skip to main content

AI's False Reality: Understanding Hallucination

Struggling with delivery, architecture alignment, or platform stability?

I help teams fix systemic engineering issues: processes, architecture, and clarity.
→ See how I work with teams.


This article explains why AI hallucinations are not glitches but predictable outcomes of how modern models learn: overfitting to training data, hidden bias, distributional shift, gaps in domain knowledge, and even adversarial inputs. It illustrates how systems confidently produce polished but misleading narratives—as seen in common explanations around the Berlin Wall—showing how models blend facts, public sentiment and assumptions into answers that feel credible but may omit or distort reality. Hallucinations become dangerous when embedded into high-stakes systems like autonomous vehicles, medical diagnostics, military decision-making or information ecosystems already strained by disinformation. While eliminating hallucinations entirely is impossible, the article outlines mitigation strategies such as balanced datasets, regularization, uncertainty estimation, grounding to trusted sources, and transparency practices. The core message: trustworthy AI requires rigorous design, contextual awareness, and human responsibility, not blind reliance on model confidence.

Artificial Intelligence (AI) has leapfrogged to the poster child of technological innovation, on track to transform industries in a scale similar to the Industrial Revolution of the 1800s. But in this case, as cutting-edge technology, AI presents its own unique challenge, exploiting our human behavior of "love to trust", we as humans face a challenge: AI hallucinations.

This phenomenon, where AI models generate outputs that are factually incorrect, misleading, or entirely fabricated, raises complex questions about the reliability and trust of AI models and larger systems.
The tendency for AI to hallucinate comes from several interrelated factors. Overfitting – a condition where models become overly specialized to their training data – can lead to confident but wildly inaccurate responses when presented with novel scenarios (Guo et al., 2017). Moreover, biases embedded within datasets shape the models' understanding of the world; if these datasets are flawed or unrepresentative, hallucinations can become a vehicle for perpetuating harmful stereotypes and discrimination (Gebru et al., 2018).

Another significant source of hallucinations is distributional shift – the discrepancy between the data an AI model encounters during training and the messy, unpredictable nature of real-world situations (Quionero-Candela et al., 2009). Even with extensive training, AI models may lack a comprehensive understanding of specific topics, leading them to improvise and provide fabricated information. Additionally, AI systems are vulnerable to adversarial attacks, where meticulously crafted inputs are designed to intentionally induce hallucinations (Goodfellow et al., 2015). 

Hallucination in Reality

An example (use your favorite AI): 

Prompt: "What happened around the date the Berlin Wall was built?"

Perplexity:

"The Berlin Wall was built around the date of August 13, 1961, as a result of a decree passed by the East German government on August 12. The primary intention for the Wall's construction was to prevent East German citizens from fleeing to the West ......" => Output

Gemini Advanced:

"The construction of the Berlin Wall was a pivotal moment in Cold War history. Here's a breakdown of the key events leading up to it and the immediate aftermath...." => Output 

ChatGPT 3.5:

"The Berlin Wall was erected on August 13, 1961. This event marked a significant moment in the history of the Cold War, a period of geopolitical tension between the Western Bloc....." => Output

Now, what happened around the date the Berlin Wall was built? Here's a great, neutral breakdown: https://mashable.com/feature/jumping-the-berlin-wall

As this example shows, AI tries to combine things which aren't relevant, builds some educational frame around, which might be biased towards a public meaning and missing significant pieces of information. 
Hallucinations in systems like self-driving cars or medical diagnostics could have devastating consequences. 

The use of AI in military operations has already started and becomes more or less a standard, combined with hallucinations it will have devastating outcomes, when not tackled accordingly (https://www.defense.gov/News/News-Stories/Article/Article/3597093/us-endorses-responsible-ai-measures-for-global-militaries/).

The problems associated with AI generated manipulations are present and increasing (https://reutersinstitute.politics.ox.ac.uk/news/how-ai-generated-disinformation-might-impact-years-elections-and-how-journalists-should-report). The spread of AI-generated misinformation undermines public meaning, increases fear to trust the technology, manipulates the adoption. This leads to the public assumption that "AI will kill humans" (Google search), which is mainly driven by science fiction like "Terminator". 

Though complete elimination of AI hallucinations may be unrealistic, researchers are focusing on strategies to manage the problem. The creation of large, meticulously balanced datasets that accurately reflect diverse real-world scenarios is essential for improving AI generalization. But who balances the data? We. In our daily routine, in our personal view about the world. 

Regularization techniques can help prevent overfitting, encouraging models to learn broader patterns. Perhaps most crucially, teaching AI models to express their uncertainty can provide users with a valuable tool to gauge the reliability of outputs (Kendall and Gal, 2017). Integrating mechanisms like fact-checking and grounding AI to trusted, neutral knowledge bases enables additional safeguards against hallucinations. 

References:
Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. In Proceedings of the 34th International Conference on MachineLearning (pp. 1321-1330).
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2018). Datasheets for datasets. arXiv preprint arXiv:1803.09010.
Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2009). Dataset shift in machine learning. The MIT Press.
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In International Conference on Learning Representations.

Additional links:

If you need help with distributed systems, backend engineering, or data platforms, check my Services.

Most read articles

Why Is Customer Obsession Disappearing?

Many companies trade real customer-obsession for automated, low-empathy support. Through examples from Coinbase, PayPal, GO Telecommunications and AT&T, this article shows how reliance on AI chatbots, outsourced call centers, and KPI-driven workflows erodes trust, NPS and customer retention. It argues that human-centric support—treating support as strategic investment instead of cost—is still a core growth engine in competitive markets. It's wild that even with all the cool tech we've got these days, like AI solving complex equations and doing business across time zones in a flash, so many companies are still struggling with the basics: taking care of their customers. The drama around Coinbase's customer support is a prime example of even tech giants messing up. And it's not just Coinbase — it's a big-picture issue for the whole industry. At some point, the idea of "customer obsession" got replaced with "customer automation," and no...

How to scale MySQL perfectly

When MySQL reaches its limits, scaling cannot rely on hardware alone. This article explains how strategic techniques such as caching, sharding and operational optimisation can drastically reduce load and improve application responsiveness. It outlines how in-memory systems like Redis or Memcached offload repeated reads, how horizontal sharding mechanisms distribute data for massive scale, and how tools such as Vitess, ProxySQL and HAProxy support routing, failover and cluster management. The summary also highlights essential practices including query tuning, indexing, replication and connection management. Together these approaches form a modern DevOps strategy that transforms MySQL from a single bottleneck into a resilient, scalable data layer able to grow with your application. When your MySQL database reaches its performance limits, vertical scaling through hardware upgrades provides a temporary solution. Long-term growth, though, requires a more comprehensive approach. This invo...

What the Heck is Superposition and Entanglement?

This post is about superposition and interference in simple, intuitive terms. It describes how quantum states combine, how probability amplitudes add, and why interference patterns appear in systems such as electrons, photons and waves. The goal is to give a clear, non mathematical understanding of how quantum behavior emerges from the rules of wave functions and measurement. If you’ve ever heard the words superposition or entanglement thrown around in conversations about quantum physics, you may have nodded politely while your brain quietly filed them away in the "too confusing to deal with" folder.  These aren't just theoretical quirks; they're the foundation of mind-bending tech like Google's latest quantum chip, the Willow with its 105 qubits. Superposition challenges our understanding of reality, suggesting that particles don't have definite states until observed. This principle is crucial in quantum technologies, enabling phenomena like quantum comp...