Skip to main content

Manage rights in OpenStack

Struggling with delivery, architecture alignment, or platform stability?

I help teams fix systemic engineering issues: processes, architecture, and clarity.
→ See how I work with teams.


Openstack lacks on sophisticated rights management, the most users figure. But that's not the case, role management in Openstack is available.

First users and groups needs to be added to projects, this can be done per CLI or GUI [1]. Lets say, a group called devops shall have the full control about OpenStack, but others not in that group can have dedicated operation access like create snapshot, stop / start / restart an instance or looking at the floating IP pool.

Users, Groups and Policies

OpenStack handles the rights in a policy file in /etc/nova/policy.json, using roles definitions per group assigned to all tasks OpenStack provides. It looks like:

{
"context_is_admin": "role:admin",
"admin_or_owner": "is_admin:True or project_id:%(project_id)s",
"default": "rule:admin_or_owner",
...
}

and describes the default - a member of a project is the admin of that project. To add additional rules, they have to be defined here. 

In my case, I created a goup devops, added the users and defined the rights like:


"devops": "is_admin:True or (project_id:%(project_id)s and not role:user and not role:guest)",

and assigned the role to all tasks, an DevOps team member should be able to perform. Project owners / admins can operate with instances in her project, but in an controlled way. Basically, I revoked all delete / move / reassign tasks, like network and subnet management or delete an instance.

The full policy file is available in my GitHub repo [2].

[1] http://docs.openstack.org/admin-guide/cli-manage-projects-users-and-roles.html
[2] https://github.com/alo-alt/OpenStack/blob/master/policy.json

If you need help with distributed systems, backend engineering, or data platforms, check my Services.

Most read articles

Why Is Customer Obsession Disappearing?

Many companies trade real customer-obsession for automated, low-empathy support. Through examples from Coinbase, PayPal, GO Telecommunications and AT&T, this article shows how reliance on AI chatbots, outsourced call centers, and KPI-driven workflows erodes trust, NPS and customer retention. It argues that human-centric support—treating support as strategic investment instead of cost—is still a core growth engine in competitive markets. It's wild that even with all the cool tech we've got these days, like AI solving complex equations and doing business across time zones in a flash, so many companies are still struggling with the basics: taking care of their customers. The drama around Coinbase's customer support is a prime example of even tech giants messing up. And it's not just Coinbase — it's a big-picture issue for the whole industry. At some point, the idea of "customer obsession" got replaced with "customer automation," and no...

How to scale MySQL perfectly

When MySQL reaches its limits, scaling cannot rely on hardware alone. This article explains how strategic techniques such as caching, sharding and operational optimisation can drastically reduce load and improve application responsiveness. It outlines how in-memory systems like Redis or Memcached offload repeated reads, how horizontal sharding mechanisms distribute data for massive scale, and how tools such as Vitess, ProxySQL and HAProxy support routing, failover and cluster management. The summary also highlights essential practices including query tuning, indexing, replication and connection management. Together these approaches form a modern DevOps strategy that transforms MySQL from a single bottleneck into a resilient, scalable data layer able to grow with your application. When your MySQL database reaches its performance limits, vertical scaling through hardware upgrades provides a temporary solution. Long-term growth, though, requires a more comprehensive approach. This invo...

What the Heck is Superposition and Entanglement?

This post is about superposition and interference in simple, intuitive terms. It describes how quantum states combine, how probability amplitudes add, and why interference patterns appear in systems such as electrons, photons and waves. The goal is to give a clear, non mathematical understanding of how quantum behavior emerges from the rules of wave functions and measurement. If you’ve ever heard the words superposition or entanglement thrown around in conversations about quantum physics, you may have nodded politely while your brain quietly filed them away in the "too confusing to deal with" folder.  These aren't just theoretical quirks; they're the foundation of mind-bending tech like Google's latest quantum chip, the Willow with its 105 qubits. Superposition challenges our understanding of reality, suggesting that particles don't have definite states until observed. This principle is crucial in quantum technologies, enabling phenomena like quantum comp...