Skip to main content

Hadoop based SQL engines

Listen:

Apache Hadoop comes more and more into the focus of business critical architectures and applications. Naturally SQL based solutions are the first to get considered, but the market is evolving and new tools are coming up, but leaving unnoticed.

Listed below an overview over currently available Hadoop based SQL technologies. The must haves are:

Open Source (various contributors), low-latency querying possible, supporting CRUD (mostly!) and statements like CREATE, INSERT INTO, SELECT * FROM (limit..), UPDATE Table SET A1=2 WHERE, DELETE, and DROP TABLE.

Apache Hive (SQL-like, with interactive SQL (Stinger)
Apache Drill (ANSI SQL support)
Apache Spark (Spark SQL, queries only, add data via Hive, RDD or Parquet)
Apache Phoenix (built atop Apache HBase, lacks full transaction support, relational operators and some built-in functions)
Presto from Facebook (can query Hive, Cassandra, relational DBs & etc. Doesn't seem to be designed for low-latency responses across small clusters, or support UPDATE operations. It is optimized for data warehousing or analytics¹)
VoltDB (ACID compatible, ANSI SQL near 92, low-latency multi query engine)
SQL-Hadoop via MapR community edition (seems to be a packaging of Hive, HP Vertica, SparkSQL, Drill and a native ODBC wrapper)
Apache Kylin from Ebay (provides an SQL interface and multi-dimensional analysis [OLAP], "… offers ANSI SQL on Hadoop and supports most ANSI SQL query functions". It depends on HDFS, MapReduce, Hive and HBase; and seems targeted at very large data-sets though maintains low query latency)
Apache Tajo (ANSI/ISO SQL standard compliance with JDBC driver support [benchmarks against Hive and Impala])
Cascading's Lingual² ("Lingual provides JDBC Drivers, a SQL command shell, and a catalog manager for publishing files [or any resource] as schemas and tables.")

Non Open Source, but also interesting
Splice Machine (Standard ANSI SQL, Transactional Integrity)
Pivotal Hawq (via Pivotal HD, ANSI SQL 92, 99 and OLAP)
Cloudera Impala (SQL-like, ANSI 92 compliant, MPP and low-latency)
Impala does not incorporate usage of Hadoop, but leverages the cached data of HDFS on each node to quickly return data (w/o performing Map/Reduce jobs). Thus, overhead related to performing a Map/Reduce job is short-cut and one can gain improvements runtime.
Conclusion: Impala does not replace Hive. However, it is good for different kind of jobs, such as small ad-hoc queries well-suited for analyzing data as business analysts. Robust jobs such as typical ETL taks, on the other hand, require Hive due to the fact that a failure of one job can be very costly.

Thanks to Samuel Marks, who posted originally on the hive user mailing list

Comments

Popular posts from this blog

Deal with corrupted messages in Apache Kafka

Under some strange circumstances, it can happen that a message in a Kafka topic is corrupted. This often happens when using 3rd party frameworks with Kafka. In addition, Kafka < 0.9 does not have a lock on Log.read() at the consumer read level, but does have a lock on Log.write(). This can lead to a rare race condition as described in KAKFA-2477 [1]. A likely log entry looks like this: ERROR Error processing message, stopping consumer: (kafka.tools.ConsoleConsumer$) kafka.message.InvalidMessageException: Message is corrupt (stored crc = xxxxxxxxxx, computed crc = yyyyyyyyyy Kafka-Tools Kafka stores the offset of each consumer in Zookeeper. To read the offsets, Kafka provides handy tools [2]. But you can also use zkCli.sh, at least to display the consumer and the stored offsets. First we need to find the consumer for a topic (> Kafka 0.9): bin/kafka-consumer-groups.sh --zookeeper management01:2181 --describe --group test Prior to Kafka 0.9, the only way to get this inform

Hive query shows ERROR "too many counters"

A hive job face the odd " Too many counters:"  like Ended Job = job_xxxxxx with exception 'org.apache.hadoop.mapreduce.counters.LimitExceededException(Too many counters: 201 max=200)' FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.MapRedTask Intercepting System.exit(1) These happens when operators are used in queries ( Hive Operators ). Hive creates 4 counters per operator, max upto 1000, plus a few additional counters like file read/write, partitions and tables. Hence the number of counter required is going to be dependent upon the query.  To avoid such exception, configure " mapreduce.job.counters.max " in mapreduce-site.xml to a value above 1000. Hive will fail when he is hitting the 1k counts, but other MR jobs not. A number around 1120 should be a good choice. Using " EXPLAIN EXTENDED " and " grep -ri operators | wc -l " print out the used numbers of operators. Use this value to tweak the MR s

AI's False Reality: Understanding Hallucination

Artificial Intelligence (AI) has leapfrogged to the poster child of technological innovation, on track to transform industries in a scale similar to the Industrial Revolution of the 1800s. But in this case, as cutting-edge technology, AI presents its own unique challenge, exploiting our human behavior of "love to trust", we as humans face a challenge: AI hallucinations. This phenomenon, where AI models generate outputs that are factually incorrect, misleading, or entirely fabricated, raises complex questions about the reliability and trust of AI models and larger systems. The tendency for AI to hallucinate comes from several interrelated factors. Overfitting – a condition where models become overly specialized to their training data – can lead to confident but wildly inaccurate responses when presented with novel scenarios (Guo et al., 2017). Moreover, biases embedded within datasets shape the models' understanding of the world; if these datasets are flawed or unreprese