Skip to main content

Using filters in HBase to match certain columns

Listen:
HBase is a column oriented database which stores the content by column rather than by row. To limit the output of an scan you can use filters, so far so good.

But how it'll work when you want to filter more as one matching column, let's say 2 or more certain columns?
The trick here is to use an SingleColumnValueFilter (SCVF) in conjunction with a boolean arithmetic operation. The idea behind is to include all columns which have "X" and NOT the value DOESNOTEXIST; the filter would look like:


List list = new ArrayList<Filter>(2);
Filter filter1 = new SingleColumnValueFilter(Bytes.toBytes("fam1"),
 Bytes.toBytes("VALUE1"), CompareOp.DOES_NOT_EQUAL, Bytes.toBytes("DOESNOTEXIST"));
filter1.setFilterIfMissing(true);
list.addFilter(filter1);
Filter filter2 = new SingleColumnValueFilter(Bytes.toBytes("fam2"),
 Bytes.toBytes("VALUE2"), CompareOp.DOES_NOT_EQUAL, Bytes.toBytes("DOESNOTEXIST"));
filter2.setFilterIfMissing(true);
list.addFilter(filter2);
FilterList filterList = new FilterList(list);
Scan scan = new Scan();
scan.setFilter(filterList);



Define a new filter list, add an family (fam1) and define the filter mechanism to match VALUE1 and compare them with NOT_EQUAL => DOESNOTEXIST. Means, the filter match all columns which have VALUE1 and returns only the rows who have NOT included DOESNOTEXIST. Now you can add more and more values to the filter list, start the scan and you should only get data back which match exactly your conditions.

Comments

Popular posts from this blog

Beyond Ctrl+F - Use LLM's For PDF Analysis

PDFs are everywhere, seemingly indestructible, and present in our daily lives at all thinkable and unthinkable positions. We've all got mountains of them, and even companies shouting about "digital transformation" haven't managed to escape their clutches. Now, I'm a product guy, not a document management guru. But I started thinking: if PDFs are omnipresent in our existence, why not throw some cutting-edge AI at the problem? Maybe Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) could be the answer. Don't get me wrong, PDF search indexes like Solr exist, but they're basically glorified Ctrl+F. They point you to the right file, but don't actually help you understand what's in it. And sure, Microsoft Fabric's got some fancy PDF Q&A stuff, but it's a complex beast with a hefty price tag. That's why I decided to experiment with LLMs and RAG. My idea? An intelligent knowledge base built on top of our existing P...

Deal with corrupted messages in Apache Kafka

Under some strange circumstances, it can happen that a message in a Kafka topic is corrupted. This often happens when using 3rd party frameworks with Kafka. In addition, Kafka < 0.9 does not have a lock on Log.read() at the consumer read level, but does have a lock on Log.write(). This can lead to a rare race condition as described in KAKFA-2477 [1]. A likely log entry looks like this: ERROR Error processing message, stopping consumer: (kafka.tools.ConsoleConsumer$) kafka.message.InvalidMessageException: Message is corrupt (stored crc = xxxxxxxxxx, computed crc = yyyyyyyyyy Kafka-Tools Kafka stores the offset of each consumer in Zookeeper. To read the offsets, Kafka provides handy tools [2]. But you can also use zkCli.sh, at least to display the consumer and the stored offsets. First we need to find the consumer for a topic (> Kafka 0.9): bin/kafka-consumer-groups.sh --zookeeper management01:2181 --describe --group test Prior to Kafka 0.9, the only way to get this in...

MySQL Scaling in 2024

When your MySQL database reaches its performance limits, vertical scaling through hardware upgrades provides a temporary solution. Long-term growth, though, requires a more comprehensive approach. This involves optimizing the database strategically and integrating complementary technologies. Caching The implementation of a caching layer, such as Memcached or Redis , can result in a notable reduction in the load and an increase ni performance at MySQL. In-memory stores cache data that is accessed frequently, enabling near-instantaneous responses and freeing the database for other tasks. For applications with heavy read traffic on relatively static data (e.g. product catalogues, user profiles), caching represents a low-effort, high-impact solution. Consider a online shop product catalogue with thousands of items. With each visit to the website, the application queries the database in order to retrieve product details. By using caching, the retrieved details can be stored in Memcached (a...